Capillary condensation under atomic scale pressure

  • 1.

    Charlex, E. And Sicotti, M. Capillary condensation in confined media (CRC 2010).

  • 2.

    Van Honschoten, JW, Brunets, N. & Tas, NR Capillarity on the nanoscale. Chem. Rev. Company. 39, 1096-1114 (2010).

    Google Scholar

  • 3.

    Malijevský, A. & Jackson, G. Perspective on the interfacial properties of liquid nanoparticles. J. Phys. Condenses. Thing 24, 464121 (2012).

    Advertisement

    Google Scholar

  • 4.

    Barsotti, E., Tan, SP, Saraji, S., Piri, M. & Chen, J.-H. A review of capillary condensation in nanocomposites: implications for hydrocarbon recovery from cramped tanks. fuel 184, 344–361 (2016).

    Issue

    Google Scholar

  • 5.

    Thompson, W. About the balance of vapor on a curved surface of a liquid. Brook. R. Soc. Edenb. 7, 63-68 (1872).

    Google Scholar

  • 6.

    Aukett, PN, Quirke, N., Riddiford, S. & Tennison, SR. Methane adsorption on micro-porous carbon – a comparison of experiment, theory, and simulation. carbon 30, 913-924 (1992).

    Issue

    Google Scholar

  • 7.

    Fisher, LR, Gamble, RA & Middlehurst, J. The kelvin equation and capillary condensation of water. nature 290, 575-576 (1981).

    Advertisement
    Issue

    Google Scholar

  • 8.

    Kohonen, MM & Christenson, HK. Capillary condensation of water between washed mica surfaces. Langmuir 16, 7285-7288 (2000).

    Issue

    Google Scholar

  • 9.

    Metropoulos, A. The Kelvin equation. J. Colloid Interface Science. 317, 643-648 (2008).

    Advertisement
    Issue

    Google Scholar

  • 10.

    Zhong, J. et al. Capillary condensation in channels with a depth of 8 nm. J. Phys. Chem. Lett. 9, 497-503 (2018).

    Issue

    Google Scholar

  • 11.

    Yang, G., Chai, D., Fan, Z. & Li, X. Capillary condensation of mono- and multicomponent fluids in nanopores. Indiana Prairie. Chem. Precision. 58, 19302–19315 (2019).

    Issue

    Google Scholar

  • 12.

    Kim, S., Kim, D., Kim, J., An, S. & Jhe, W. Direct evidence of bending-dependent surface tension in capillary condensation: the Kelvin equation at the molecular scale. Phys. 10th Rev. 8041046 (2018).

    Google Scholar

  • See also  Scientists have found a way for machines to see through clouds and fog
  • 13.

    Gruener, S., Hofmann, T., Wallacher, D., Kityk, AV & Huber, P. Capillary elevation in hydrophilic nanopores. Phys. Rev. E. 79, 067301 (2009).

    Advertisement

    Google Scholar

  • 14.

    Vincent, or. , Margate, B. Stroke, AD impregnation produced by condensation of capillaries in nanopores. Langmuir 33, 1655–1661 (2017).

    Issue

    Google Scholar

  • 15.

    Shane, D. Hwang, J and J, W. Ice-VII as the molecular structure of the surrounding water nanomeniscus. Nat. Mutual. 10286 (2019).

    Advertisement
    PubMed
    PubMed Central

    Google Scholar

  • 16.

    Verdaguer, A., Sacha, GM, Bluhm, H. & Salmeron, M. Molecular structure of water in interfaces: nanometer hydration. Chem. pastor. 106, 1478-1510 (2006).

    Issue

    Google Scholar

  • 17.

    Matsuoka, H, Fukui, S, Kato, T. Nanomiscus forces in unsaturated vapors: a remarkable limitation of macroscopic properties. Langmuir 18, 6796-6801 (2002).

    Issue

    Google Scholar

  • 18.

    Bowles, JG on the validity of the Kelvin equation. J. Phys. Maths. The general. 18, 1551-1560 (1985).

    Advertisement
    Issue

    Google Scholar

  • 19.

    Walton, GPRB and Quirk, N.V. Capillary condensation: a molecular simulation study. mall. together. 2, 361–391 (1989).

    Google Scholar

  • 20.

    Cheng, S. & Robbins, MO. Adhesion of nanofilaments between parallel plates. Langmuir 32, 7788–7795 (2016).

    Issue

    Google Scholar

  • 21.

    Knežević, M. & Stark, H. Capillary condensation in an active bath. EPL 12840008 (2019).

    Google Scholar

  • 22.

    Sing, KSW & Williams, RT. Historical aspects of capillary ability and capillary thickening. Mesoporous mater. 154, 16-18 (2012).

    Issue

    Google Scholar

  • 23.

    Schoen, M. & Günther, G. Phase transitions in nanoscale fluids: synergistic coupling between soft and solid matter. Soft material 6, 5832-5838 (2010).

    Advertisement
    Issue

    Google Scholar

  • 24.

    Gore, G., Hopper, B, Bernstein, N. Adsorption-induced deformation of nanomaterials – a review. Phys application. pastor. 4011303 (2017).

    Advertisement

    Google Scholar

  • 25.

    Altabet, YE, Haji-Akbari, A. & Debenedetti, PG. Effect of elasticity of materials on thermodynamics and kinetics of water evaporation induced hydrophobicity. Brook. Natl Acad. Sciences. United States of America 114, E2548 – E2555 (2017).

    Issue

    Google Scholar

  • 26.

    Radha, B et al. Molecular transport through capillaries made with precision at an atomic scale. nature 538222-225 (2016).

    Advertisement
    Issue

    Google Scholar

  • 27.

    Gopinadhan, K et al. Complete exclusion of ions and proton transport through single-layer confined water. Science 363, 145–148 (2019).

    Advertisement
    Issue

    Google Scholar

  • 28.

    Drelich, J., Chibowski, E., Meng, DD & Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft material 7, 9804–9828 (2011).

    Advertisement
    Issue

    Google Scholar

  • 29.

    Mücksch, C., Rösch, C., Müller-Renno, C., Ziegler, C. & Urbassek, HM. Consequences of hydrocarbon contamination of wettability and protein absorption on graphite surfaces. J. Phys. Chem. C 119, 12496-12501 (2015).

    Google Scholar

  • 30.

    Fumagali, L. Et al. Abnormally low dielectric constant for confined water. Science 360, 1339-1342 (2018).

    Advertisement
    Issue

    Google Scholar

  • 31.

    Weeks, BL & Vaughn, MW. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 21, 8096-8098 (2005).

    Issue

    Google Scholar

  • 32.

    Malijevský, A. & Parry, AO. Modified Kelvin equations for capillary condensation in narrow and wide grooves. Phys. Pastor Litt. 120, 135701 (2018).

    Advertisement

    Google Scholar

  • 33.

    Christenson, HK & Thomson, NH The nature of air-cleaved mica surface. browse. Sciences. Replay / count. 71, 367-390 (2016).

    Advertisement
    Issue

    Google Scholar

  • 34.

    Neek-Amal, M., Peeters, FM, Grigorieva, IV & Geim, AK Effects of susceptibility on the viscosity of nanoparticles. ACS Nano 10, 3685–3692 (2016).

    Issue
    PubMed
    PubMed Central

    Google Scholar

  • 35.

    Horace, I et al. WSXM: Software for probe microscopy examination and nanotechnology tool. Science Pastor. The instrument. 78013705 (2007).

    Advertisement
    Issue

    Google Scholar

  • 36.

    Gore, J et al. Flexible response of mesoporous silicon to capillary stress in the pore. Phys application. Lett. 106, 261901 (2015).

    See also  Brexit: Britain reaches a deadline extension in the dispute over Northern Ireland

    Advertisement

    Google Scholar

  • 37.

    Bangham, DH & Fakhoury, N. The expansion of coals associated with absorption of gases and vapors. nature 122, 681-682 (1928).

    Advertisement
    Issue

    Google Scholar

  • 38.

    Li, T. & Zhang, Z. Substrate-regulated graphene morphology. J. Phys. Dr 43, 075303 (2010).

    Advertisement

    Google Scholar

  • 39.

    Scharfenberg, S., Mansukhani, N., Chialvo, C., Weaver, RL & Mason, N. A note on sudden instability in graphene. Phys application. Lett. 100021910 (2012).

    Advertisement

    Google Scholar

  • 40.

    Israelachvili, JN Between particles and surface forces (Academic, 2011).

  • 41.

    Heppler, RC Mechanics of materials 814 (Pearson, 2015).

  • 42.

    McNeil, LE & Grimsditch, M. Flexible Muscovite Mica Models. J. Phys. Condenses. Thing 5, 1681–1690 (1993).

    Advertisement
    Issue

    Google Scholar

  • 43.

    Cost, JR, Janowski, KR & Rossi, R. The elastic properties of isotropic graphite. Elephant. Permissible. 17, 851-854 (1968).

    Advertisement
    Issue

    Google Scholar

  • 44.

    Ling, FF, Lai, WM, Lucca, and DA Surface Mechanics Fundamentals: With Applications 96-97 (Springer, 2012).

  • 45.

    Plimpton, S. Fast parallel algorithms for short-term molecular dynamics. J. Compote. Phys. 117, 1–19 (1995).

    Advertisement
    Issue
    Maths

    Google Scholar

  • 46.

    Berendsen, HJC, Grigera, JR & Straatsma, TP.The missing term in effective pair potentials. J. Phys. Chem. 916269-6271 (1987).

    Issue

    Google Scholar

  • 47.

    Wu, Y. & Aluru, NR graphite reaction parameters for carbon and unconstrained water. J. Phys. Chem. B 117, 8802–8813 (2013).

    Issue

    Google Scholar

  • 48.

    Cicero, G., Grossman, JC, Schwegler, E., Gygi, F. & Galli, G. Water trapped in nanotubes and between graphene sheets: a preliminary study. J. Chem. a company. 130, 1871-1878 (2008).

    Issue

    Google Scholar

  • 49.

    Sendner, C., Horinek, D., Bocquet, L. & Netz, RR Water interfaces on hydrophobic and hydrophobic surfaces: slip, viscosity and diffusion. Langmuir 25, 10768-10781 (2009).

    Issue

    Google Scholar

  • Leave a Reply

    Your email address will not be published. Required fields are marked *